Bis[(désoxy-1 *O*-isopropylidène-2,3 α-D-ribofurannosyl)amino]-2,5 Difluoro-3,6 *p*-Benzoquinone

PAR A. DUBOURG ET R. ROQUES*

Laboratoire de Cristallographie, Université d'Abidjan, 04 BP 322 Abidjan 04, Côte d'Ivoire

J. L. MONTÉRO ET E. GUY

Laboratoire de Chimie Thérapeutique, Université d'Abidjan, 04 BP 322 Abidjan 04, Côte d'Ivoire

A. MORUZZI ET J. L. IMBACH

Laboratoire de Chimie Bioorganique, USTL, 34060 Montpellier CEDEX, France

ET J. P. DECLERCQ ET G. GERMAIN

Laboratoire de Chimie Physique et de Cristallographie, Université de Louvain, 1348 Louvain-la-Neuve, Belgique

(Reçu le 2 juin 1981, accepté le 19 novembre 1981)

Abstract. $C_{22}H_{28}F_2N_2O_{10}$, orthorhombic, space group $P2_12_12_1$, a = 26.500 (6), b = 15.544 (4), c = 5.615 (1) Å, Z = 4 from three-dimensional diffractometer data collected with Cu $K\alpha$ radiation. The structure was solved by direct methods (R = 0.051 for 1665 observed reflexions). The configuration of this compound is α and the conformation of the ribofuranose ring is E_0 . The structures of the two anomeric adducts are confirmed by NMR spectroscopy.

Introduction. Les benzoquinones substituées par des groupements aziridinyles constituent une classe de composés anti-tumoraux. Afin d'accéder à ce type de substances renfermant, en plus des groupements glycosylés, pouvant permettre d'en moduler le caractère hydrophyle ou lipophyle, le schéma de synthèse suivant a été envisagé: condensation sur le fluoranil (1) d'un amino-sucre suivie d'une substitution des fluors restants par l'aziridine (Fig. 1).

* Adresse actuelle: Laboratoire Structure et Vie, Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse CEDEX, France.

Fig. 1. Schéma réactionnel.

0567-7408/82/041349-04\$01.00

Fig. 2. Possibilités de substitution.

La première étape de cette condensation effectuée avec l'amino-1 désoxy-1 O-isopropylidène-2,3 D-ribofurannose (Cusack, Hildick, Robinson, Rugg & Shaw, 1973) permet, après chromatographie, d'isoler trois produits. Le moins polaire a été identifié comme étant le dérivé monosubstitué (2a) (Fig. 1).

Les deux autres composés isolés présentent des spectres de masse semblables, montrant notamment un pic moléculaire à m/e 518 correspondant à la masse du produit disubstitué de formule brute $C_{22}H_{28}F_2N_2O_{10}$ confirmé dans les deux cas par microanalyse. Nous nous sommes surtout attachés à la structure du composé le plus polaire (2ba) car le plus abondant (20%) et obtenu parfaitement pur et cristallisé, alors que le moins polaire $(2b\beta)$, moins abondant (5%), est peu stable.

Pour un dérivé disubstitué il peut exister trois isomères: *ortho*, *méta* et *para* substitué (Fig. 2). De plus, pour un même isomère de position, dont le plus probable est l'isomère *para* (Te Chou, Khan & Driscoll, 1976), plusieurs combinaisons sont possibles au niveau de l'anomérie des substituants osidiques ($\alpha-\alpha$, $\alpha-\beta$ et $\beta-\beta$). L'examen du spectre de RMN du

© 1982 International Union of Crystallography

composé disubstitué le plus abondant $(2b\alpha)$ ne nous permet de préciser ni la position de la substitution des groupements amino-osidiques (le cycle benzoquinonique étant totalement substitué), ni l'anomérie de ces mêmes groupements. Cependant ce dérivé $(2b\alpha)$ réagit avec l'aziridine pour donner un composé dans lequel le radical aziridinyle s'est substitué à un fluor conduisant ainsi à une molécule (3) potentiellement bio-active (Fig. 1).

Afin de lever l'ambiguïté structurale de ces substances nous avons étudié par diffraction de rayons-X le dérivé disubstitué (2ba).

Le spectre de diffraction a été enregistré sur un diffractomètre automatique à quatre cercles Syntex $P2_1$ (rayonnement Cu K α). Pour un angle maximum de $2\theta = 114^\circ$, 1845 réflexions ont été mesurées, dont 1665 ont une intensité suffisante pour être considérées comme observées $[I \ge 2, 5\sigma(I)]$.

Та	bleau 1. C	oordonr	iées atomi	que	s (×10⁴) de	es atomes
de	carbone,	azote,	oxygène	et	fluore	et	facteurs
	thermiques	s isotrop	es équival	ents	s (Ų) (d	$\sigma =$	$(0,3^{2})^{2}$

$$B_{\rm eq} = 8\pi^2 \langle (1/6\pi^2) \sum_i \sum_j \beta_{ij} \, \mathbf{a}_i \cdot \mathbf{a}_j \rangle.$$

			_	D	N(12) - C(5)
	x	У	Z	В _{éq}	F(10)-C(6)
C(1)	1089 (3)	1384 (6)	5779 (17)	2.3	C(1')-N(11)
C(1)	1382(3)	2233 (5)	5413 (16)	2.2	C(1'')-N(12)
C(2)	1302(3)	2205 (5)	6831 (18)	2.8	C(2')-C(1')
C(3)	123+(3)	2900 (0)	8766 (10)	2.8	O(6') - C(1')
C(4)	697(3)	2030 (0)	0738 (17)	2,0	C(3') - C(2')
C(5)	048 (3)	1967 (5)	9230 (17)	2,4	O(7) - C(2)
C(6)	/55 (3)	1320 (5)	///9(10)	2,2	C(4') - C(3')
O(7)	1163 (2)	809 (4)	4382 (14)	3,3	O(8) = C(3)
F(8)	1471 (2)	3683 (4)	6577(11)	3,4	O(12')-C(5')
O(9)	790 (3)	3445 (5)	10073 (15)	4,4	C(9')-O(8')-
F(10)	540 (2)	550 (4)	8047 (11)	3.5	C(4')-O(6')-
N(11)	1727 (2)	2185 (4)	3687 (13)	2,5	C(9')-O(7')-
N(12)	331 (2)	2036 (4)	11150 (13)	3.2	O(7')- C(9')
C(1')	2148 (3)	2766 (5)	3442 (15)	2,4	C(10') - C(9')
C(2')	2636 (3)	2296 (5)	2589 (14)	2.2	C(10')- C(9')
$\tilde{C}(3')$	2774 (3)	2757 (5)	305 (15)	2,3	C(11') - C(9')
C(4')	2485 (3)	3603 (5)	392 (15)	2,6	C(11) - C(9)
C(5')	2782(3)	4314 (5)	1593 (17)	3.1	C(11') - C(9')
O(8')	2556 (2)	2221(3)	-1474(10)	2,6	O(6'') = C(1'')
O(6')	2028 (2)	3400(3)	1648 (10)	2.5	O(6'') = C(1'')
O(0)	2540(2)	1426 (3)	1935 (10)	2.6	C(3'') - C(2'')
C(n)	2607 (2)	1356 (5)	-631(16)	2.6	O(8'') - C(2'')
C(9)	2007(3)	818 (5)	-1608(17)	3 2	O(8")-C(2")
C(10)	2170(3)	1001 (6)	1107 (18)	3 5	C(4")-C(3")
C(11)	3127(3)	2001 (4)	2752 (12)	13	O(7")C(3")
$O(12^{\circ})$	2995 (2)	3991 (4)	12022 (12)	4.5	O(7")C(3")
C(1'')	5 (2)	1360 (4)	12022 (11)	2.7	C(5'')-C(4'')
C(2")	-26/(2)	16/2 (4)	14324 (13)	2.9	O(6'') - C(4'')
C(3")	-825 (2)	1661 (4)	13655 (13)	2,8	O(6'') = C(4'')
C(4'')	-857 (2)	1081 (4)	11533 (13)	2.8	$O(12^{10}) C(5^{10})$
C(5")	-909 (2)	130 (4)	12238 (13)	3.3	C(4') = O(6')
O(6'')	-387 (2)	1183 (3)	10282 (9)	3,4	C(9'') = O(7'')
O(7'')	-915 (2)	2534 (3)	12949 (9)	3,1	O(8'') = C(9'')
O(8'')	-156 (2)	2558 (3)	14839 (9)	3,2	C(10'') = C(9')
C(9")	-607 (3)	3064 (4)	14418 (14)	3.1	C(10")- C(9
C(10")	-461 (3)	3865 (4)	13079 (14)	3,9	C(11")-C(9
C(11")	-862 (3)	3252 (5)	16770 (15)	4,9	C(11") -C(9
O(12")	-1407 (2)	1 (3)	13199 (10)	3,8	C(11")-C(9

La structure a été résolue par le système de programmes *MULTAN* 80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). L'ensemble de phases le plus probable a révélé dans la synthèse de Fourier correspondante l'ensemble des atomes lourds.

L'affinement par moindres carrés avec matrice complète a été effectué au moyen du programme SHELX 76 (Sheldrick, 1976). Le poids de chaque réflexion a été calculé d'après la relation: $W = 4.9118/[\sigma^2(F) + 0.0005F^2]$.

Nous avons effectué trois cycles d'affinement isotrope, puis deux cycles d'affinement anisotrope. Les atomes d'hydrogène n'ayant pas pu être localisés par

Tableau 2. Distances interatomiques (Å) et angles de valence (°)

			C(E) $C(A)$	1 5 1 5 (12)
	C(2) - C(1)	1,544 (12)	C(5') = C(4')	1,313(12)
	C(6) - C(1)	1,434 (13)	$O(6^{-}) - C(4^{-})$	1,430 (9)
	O(7) - C(1)	1,206 (12)	$O(12^{2}) = C(5^{2})$	1.420 (12)
s	C(3) - C(2)	1,357 (13)	C(9') = O(8')	1,431 (10)
~	N(11)–C(2)	1,335 (11)	C(9') - O(7')	1,455 (11)
S	C(4)-C(3)	1,443 (14)	C(10') - C(9')	1,490 (12)
	F(8) - C(3)	1,346 (11)	C(11')- C(9')	1.519 (12)
	C(5) - C(4)	1,526 (13)	C(2")- C(1")	1,557 (10)
	O(9) - C(4)	1,208 (13)	O(6")-C(1")	1,451 (8)
	C(6) - C(5)	1,350 (12)	C(3'')C(2'')	1,527 (9)
	N(12) - C(5)	1,366 (12)	O(8")-C(2")	1,436 (8)
a	F(10) = C(6)	1.334 (10)	C(4'') - C(3'')	1,497 (10)
,	C(1') = N(11)	1.441 (9)	O(7")C(3")	1,433 (8)
3	C(1'') = N(12)	1 446 (9)	C(5'') - C(4'')	1,536 (10)
2	C(1') C(1')	1561(11)	O(6'') - C(4'')	1,441 (8)
8	O(6') = O(1')	1 445 (10)	O(12'') - C(5'')	1,440 (8)
8	O(0) = C(1)	1,515 (11)	C(9'') = O(7'')	1.423 (9)
4	C(3) = C(2)	1,313(11) 1,424(0)	C(9'') = O(8'')	1.450 (9)
้า	O(T) = C(2)	1,424 (9)	C(10'') = C(9'')	1 505 (11)
2	$C(4^{-}) - C(3^{-})$	1,525 (11)	C(10') - C(9'')	1,502(12)
3	O(8') - C(3')	1,423 (10)	$C(\Pi) = C(\mathcal{F})$	1,512 (12)
4	O(12') = C(5') = C(4')	109.1(7)	C(6) - C(1) - C(2)	118,3 (8)
4	C(0') = O(3') = C(3')	1062(6)	O(7) - C(1) - C(2)	117,7 (8)
5	C(4') = O(6') = C(1')	107.9(5)	O(7) - C(1) - C(6)	124.0 (8)
5	C(4) = O(0) = C(1)	107.7(3)	C(3) = C(2) = C(1)	117.1 (8)
5	C(9) = O(7) = C(2)	107.7(0)	N(11) = C(2) = C(1)	113.2 (7)
.2	O(7) = C(9) = O(8)	104.2(0)	N(11) = C(2) = C(3)	129.8 (8)
,4	$C(10^{\circ}) - C(9^{\circ}) - O(6^{\circ})$	5 = 109.0(7)	C(4) = C(3) - C(2)	124 3 (9)
.2	$C(10^{\circ}) = C(9^{\circ}) = O(10^{\circ})$	(7) 108.4 (7)	E(4) = C(3) - C(2)	121.6 (8)
3	C(11') - C(9') - O(9')	(11,0,0,7)	$\Gamma(8) = C(3) = C(2)$	114 1 (8)
.6	C(11') - C(9') - O((7) 110.2 (7)	F(3) = C(3) = C(4)	1175 (8)
1	C(11') - C(9') - C(10°) $113.0(7)$	C(3) = C(4) - C(3)	117.3(8)
4	C(2'') - C(1'') - N(1'')	12) 109.3 (6)	O(9) = C(4) = C(3)	124.7 (9)
.0	O(6'') - C(1'') - N(1'')	12) 109.7(6)	O(9) = O(4) = O(3)	11/./ (9)
.5	O(6")-C(1")-C(2") 106.7 (5)	C(6) = C(5) = C(4)	110,9 (0)
,6	C(3'')-C(2'')-C(1") 103.9 (6)	N(12) - C(5) - C(4)	110.6 (7)
,6	O(8'')C(2'')C(1") 111.8 (5)	N(12) - C(5) - C(6)	130,4 (8)
.2	O(8")-C(2")-C(3") 104,9 (5)	C(5) - C(6) - C(1)	123.4 (8)
5	C(4")-C(3")-·C(2") 104.9 (6)	F(10) - C(6) - C(1)	114,5 (8)
2	O(7")C(3")-C(2") 102.6 (5)	F(10) - C(6) - C(5)	122.0 (8)
.5	O(7")- C(3") - C(4") 109.9 (6)	C(1') - N(11) - C(2)	124.4 (7)
.7	C(5")-C(4")-C(3") 112,3 (6)	C(1'') - N(12) - C(5)) 126.4 (7)
.9	O(6'') - C(4'') - C	3") 105.8 (5)	C(2')-C(1')-N(11)) 112.1 (6)
.8	O(6'') - C(4'') - C(4'')	5") 108.0 (5)	O(6')-C(1')- N(11) 109.0 (6)
8	O(12") C(5")- C	(4") 108.2 (5)	O(6') - C(1') - C(2')	106.7 (6)
2	C(4'') = O(6'') = C(6'')	1") 108.1 (5)	C(3')-C(2')-C(1')	103.8 (6)
.5	C(9'') = O(7'') - C(1)	3") 107.0 (5)	O(7') - C(2') - C(1')	112,1 (6)
,4	C(9'') = O(8'') = C(8'')	2") 108.6 (5)	O(7') - C(2') - C(3')	105.9 (6)
,1	O(8'') = C(9'') = O(8'')	7") 104.6 (5)	C(4') - C(3') - C(2')	105.1 (7)
.2	C(10'') = C(9'') = 0	(7") 109.7 (6)	O(8')-C(3')-C(2')	102.6 (6)
.1	C(10'') = C(9'') = C(9'')	(8'') = 108.6(6)	O(8') - C(3') - C(4')) 108.9 (6)
.9	C(11'') = C(9'') =	(7'') = 111.3(6)	C(5') = C(4') - C(3')) 112.4 (6)
9	$C(11'') \cdot C(9'') \cdot $	1093(6)	O(6') - C(4') - C(3')) 104.5 (6)
		(0) = 103.0(0)	O(6') = C(4') = C(5')) 112.3 (7)
.0				

une synthèse de Fourier difference, ceux-ci ont été placés en position théorique. Un dernier cycle anisotrope nous a alors donné un facteur de reliabilité R = 0.051.*

* Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et des coordonnées des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 36559: 13 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 3. Projections de Newman: (a) C(5')-C(4'), (b) C(5'')-C(4''). Angles en °, $\tilde{\sigma} = 2$.

Fig. 4. Vue de la molécule exécutée avec le programme PLUTO.

Tableau 3. Principaux angles de torsion (°) ($\bar{\sigma} = 2^{\circ}$)

N(11)-C(1')-C(2')-O(7')	8	H(C3'')-C(3'')-C(4'')-C(5'')	-41
H(C3')-C(3')-C(4')-C(5')	-36	C(1)-C(2)-N(11)-C(1')	-160
H(C3')-C(3')-C(4')-O(6')	-158	C(2)-N(11)-C(1')-C(2')	142
O(6')-C(1')-C(2')-C(3')	2	C(4)-C(5)-N(12)-C(1'')	175
C(2')-C(1')-O(6')-C(4')	-23	C(5)-N(12)-C(1'')-C(2'')	177
C(3')-C(4')-O(6')-C(1')	35	C(6)-C(1)-C(2)-N(11)	172
N(11)-C(1')-C(2')-H(C2')	-113	C(6)-C(1)-C(2)-C(3)	-8
C(1)-C(2)-N(11)-C(1')	-160	C(2)-C(3)-C(4)-C(5)	0
C(3)-C(2)-N(11)-C(1')	20	C(1)-C(2)-C(3)-C(4)	5
C(2)-N(11)-C(1')-C(2')	142	C(4)-C(5)-C(6)-C(1)	0
N(12)-C(1'')-C(2'')-H(C2'')	-109	C(3)-C(4)-C(5)-C(6)	-3
C(2")-C(1")-O(6")-C(4")	-19	O(6')-C(4')-C(5')-O(12')	71
O(6")-C(1")-C(2")-C(3")	-1	C(3')-C(4')-C(5')-O(12')	-46
C(3")-C(4")-O(6")-C(1")	32		

Les coordonnées atomiques sont rassemblées dans le Tableau 1. Les distances interatomiques et les angles de valence sont portés dans le Tableau 2. Les angles de torsion, suivant la convention de Klyne & Prelog (1960), sont consignés dans le Tableau 3 et dans la Fig. 3.

La Fig. 4 donne une vue de la molécule exécutée avec le programme *PLUTO* (Motherwell & Clegg, 1978).

Discussion. Ces résultats confirment que le dérivé (2ba) est para disubstitué.

L'examen des angles dièdres montre que les configurations des deux ribofurannoses sont α . La valeur de -36° pour l'angle H(C3')-C(3')-C(4')-C(5') et celle de -23° pour C(2')-C(1')-O(6')-C(4') ainsi que -41° pour le dièdre H(C3'')-C(3'')-C(4'')-C(5'') et -19° pour C(2'')-C(1'')-O(6'')-C(4''), entraînant les courtes distances de 3,11 Å entre C(5') et C(1') et de 3,09 Å entre C(5'') et C(1''), indiquent que les cycles ribofuranniques adoptent une configuration E_{0} . Il est à remarquer que le cycle quinonique n'est pas parfaitement plan comme le montre par exemple l'angle dièdre C(6)-C(1)-C(2)-C(3) dont la valeur est de -8° . On peut noter également que les doubles liaisons sont, dans ce cycle, parfaitement localisées (Tableau 2).

Enfin, la position relative des molécules dans le cristal fait apparaître l'existence de liaisons hydrogènes inter- et intramoléculaires:

- Liaison intermoléculaire entre l'hydroxyle HO(12'') et l'oxygène O(6') [distance entre atomes lourds O(12'')-O(6')] = 2,99 Å.

- Liaison intramoléculaire entre l'hydroxyle HO(12') et l'oxygène O(6') [distance O(12')-O(6')] = 2,97 Å.

La structure du composé (2ba) étant établie sans ambiguïte, il est possible d'interpréter son spectre de RMN ainsi que celui de son isomère $(2b\beta)$ (Tableau 4).

Pour l'isomère (2ba) les protons H(C1') et H(C1'')résonnent à 5,7 p.p.m. sous la forme d'un quartet mal résolu qui se simplifie en un doublet par deutériation

Tableau 4.Spectres de RMN

Dérivé	H(C1') H(C1'')	H(C2') H(C2'') H(C3') H(C3'')	H(C4') H(C4'')	H(C5') H(C5'')	H(N11) H(N12)	H ₃ (C10') H ₃ (C11') H ₃ (C10'') H ₃ (C11'')
2ba	5,70 (q)	4,81 (<i>m</i>)	4,26 (<i>m</i>)	3,76 (<i>m</i>)	6,86 (<i>m</i>)	1,34 (s) 1,40 (s) 1,52 (s) 1,62 (s)
2bβ	5,76 (<i>d</i>)	4,79 (<i>m</i>)	4,36 (<i>m</i>)	3,81 (<i>m</i>)	7,50 (<i>d</i>)	1,33 (s) 1,52 (s)

s = Singulet, d = doublet, q = quartet, m = multiplet.

Appareil: Varian HA-100; solvant: CDCl₃; référence interne: Me₄Si: déplacement chimique: δ p.p.m.

des fonctions amines. L'obtention de ce doublet résulte de la configuration α de la molécule (Tolman, Robins & Townsend, 1967).

L'absence de symétrie de cette structure s'observe également en solution; en effet, les protons des méthyles des cycles dioxolanes des deux ribofurannoses se présentent sous forme de quatre signaux distincts, montrant que l'anisotropie à laquelle sont soumis ces méthyles est différente pour les deux cycles ribofuranniques.

Pour l'anomère $(2b\beta)$, les protons H(C1') et H(C1'')donnent un doublet à 5,76 p.p.m. avec une constante de couplage de 8 Hz identique à celle du doublet des protons aminés.

Par deutériation, ce doublet coalesce en un singulet montrant que la configuration des deux cycles ribofuranniques est β . De plus pour cet anomère, les protons des méthyles résonnent sous la forme de deux singulets à 1,33 et 1,52 p.p.m. montrant une symétrie dans la molécule.

En conclusion, l'étude par rayons-X de la quinone $(2b\alpha)$ a permis d'établir sans ambiguïté sa structure et de préciser la configuration et la conformation des cycles osidiques. En effet, aucune méthode spectroscopique ne pouvait permettre de localiser les substitutions sur le cycle quinonique. De plus, l'identification de cette molécule a permis de déduire la structure de son isomère $(2b\beta)$ formé au cours de la réaction.

Nous remercions la Direction de l'OCM à Abidjan qui nous a permis d'effectuer tous les calculs sur ordinateurs IBM 370-145. L'un de nous (JPD) remercie le Fonds National de la Recherche Scientifique pour le mandat de chercheur qualifié qui lui a été accordé.

Références

- CUSACK, N. J., HILDICK, B. J., ROBINSON, D. H., RUGG, P. W. & SHAW, G. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 1720–1731.
- KLYNE, W. & PRELOG, V. (1960). *Experientia*, 16, 521–523.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1980). MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Departement de Physique, Univ. de York, Angleterre.
- MOTHERWELL, S. & CLEGG, B. (1978). PLUTO. Programme pour le Dessin de Structures Moléculaires et Cristallines. Univ. de Cambridge, Angleterre.
- SHELDRICK, G. M. (1976). SHELX 76. Programme pour la détermination de structures cristallines. Univ. de Cambridge, Angleterre.
- TE CHOU, F., KHAN, A. H. & DRISCOLL, J. S. (1976). J. Med. Chem. 19, 1302-1312.
- TOLMAN, R. L., ROBINS, R. K. & TOWNSEND, L. B. (1967). J. Heterocycl. Chem. 4, 230–238.

Acta Cryst. (1982). B38, 1352–1354

syn-1,6-Imino-8,13-methano[14]annulene

BY R. DESTRO, A. GAVEZZOTTI AND M. SIMONETTA

Istituto di Chimica Fisica e Centro CNR, Università, via Golgi 19, 20133 Milano, Italy

(Received 22 July 1981; accepted 29 October 1981)

Abstract. $C_{15}H_{13}N$, monoclinic, C2/c, $a = 19 \cdot 125$ (4), $b = 6 \cdot 096$ (1), $c = 19 \cdot 151$ (4) Å, $\beta = 102 \cdot 98$ (1)°, V = 2176 (1) Å³, $M_r = 207$, Z = 8, $D_c = 1 \cdot 26$, $D_m = 1 \cdot 23$ g cm⁻³ (flotation). Computer-controlled diffractometer (Enraf–Nonius CAD-4) data, Mo K α radiation ($\lambda = 0.71069$ Å), F(000) = 880, μ (Mo K α) = 0.80 cm⁻¹. The structure was solved by direct methods and refined to R = 0.065, $R_w = 0.051$ for 1352 reflections with I > 0. The molecular structure is discussed in terms of strain imposed by *syn* bridging groups and aromaticity of the annulene ring, in comparison with analogous compounds. Introduction. The number of bridged [14]annulenes whose crystal structures have been determined in our laboratory is now large; these substances offer a good opportunity to gauge electronic and steric effects of substituents on molecular conformation (Destro, Pilati & Simonetta, 1980, and references therein). The title compound has been synthesized by Vogel, Brocker & Junglas (1980), and its crystal structure is presented here.

A preliminary crystallographic study was done by photographic methods and on a Syntex $P\bar{1}$ diffractometer. Intensity data were collected on a CAD-4

0567-7408/82/041352-03\$01.00 © 1982 International Union of Crystallography